

Moving Test - MT360/MT365

Sistema de ensaio de contadores portátil

MT360 – Classe de exatidão 0.1 MT365 – Classe de exatidão 0.05

Conceito

O MT360/MT365 é um padrão portátil compacto e leve baseado na mais moderna tecnologia no que se refere a medição de potência e energia. Diversos elementos de medição, combinados com sua fácil operação proporcionam a maior flexibilidade possível para poder efetuar uma exaustiva verificação dos contadores instalados em campo.

Seu revestimento de plástico duplamente isolado mostra a alta qualidade do equipamento.

O equipamento oferece uma ótima ergonomia e funcionalidade combinadas com uma excelente operatividade através de um menu guiado por teclas e uma tela LCD de 6,4 polegadas.

Caracteristicas

- Classe de exatidão 0.05 (MT365), Classe de exatidão 0.1 (MT360)
- Facilmente operável através de um menu guiado por teclas
- Excepcional estabilidade na medição a grande termo e por temperatura
- Medição de intensidade até 120 A com pinças com erro compensado
- Cartão de memória Compact- Flash removível para exportação dos resultados e dados do cliente.
- Gestão de dados com software em ambiente Windows para avaliar os resultados
- Sistema de controle externo, vía PC, com software de controle baseado em Windows
- Não introduz erro adicional nas medições reativas
- Diversas possibilidades de configuração adicionando adaptadores de medição

Funções

O equipamento oferece as funções seguintes:

- Verificação de contadores de energia elétrica de 2, 3 e 4 fios
- Verificação dos registradores de energia e potência
- Medição de potência e energia ativa, reativa e aparente nos 4 quadrantes
- Medição de frequência, ângulo de fase e fator de potência
- Análise de harmônicos para tensão e intensidade até o 40° harmônico
- Diversas possibilidades de configuração adicionando adaptadores de medição
- Medição do fator de distorção
- Representação vetorial
- Função de osciloscópio para amostragem da forma de onda
- Tela de campo rotativa
- Medição simultânea do primário e secundário dos transformadores de intensidade
- Medição selectiva de potência
- Ensaio automático de contadores*

Gestão de dados

Para uma posterior descarga de dados no PC se armazena na memória interna do equipamento todos os valores medidos. O manuseio de dados mediante o software MTVis proporciona a possibilidade de transferir os dados armazenados a um PC externo. O operador pode imprimir todos os resultados em um informativo do ensaio ou exportá-los a outras aplicações.

^{*} Funções opcionais, en combinação com a Fonte ZERA

Medição de valores atuais

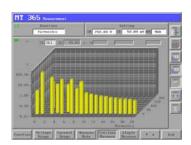
Todos os valores atuais aparecem na tela simultâneamente:

- Tensão fase neutro das 3 fases (U_{PN})
- Tensão fase fase das 3 fases (U_{PP})
- Corrente das 3 fases
- Ângulo de fase entre as tensões (Simetria)
- Todos os ângulos de fase entre tensão e corrente.
- Potência ativa, reativa e aparente.
- Frequência e rotação de fases.
- Fator de potência (cos φ)

Representação vetorial

O diagrama vetorial oferece uma informação gráfica sobre a posição e tamanho das fases. Esta representação torna fácil detectar erros de instalação nos circuitos de tensão e intensidade de um contador.

Curvas


Devido a alta velocidade de amostragem e processamento, podem ser mostradas as formas de onda de corrente e tensão. De maneira que pode se determinar com uma simples vizualização a qualidade e características das magnitudes de ensaio.

É possível medir e ver simultâneamente dois canais. A forma de onda medida pode ser armazenada na memória interna do sistema e ser nomeada aos dados do cliente.

Análise de Fourier

Devido a alta velocidade de amostragem o MT365 pode medir harmônicos em tensão e correntes até o 40° harmônico (Segundo a normativa de qualidade de tensão DIN EN 50160). O espectro harmônico medido pode ser visualizado em tabela ou diagrama de barras.

Ensaio de medidores

Uma vez introduzidos os parâmetros importantes, como a constante do contador e o número de pulsos, o sistema pode iniciar a medição de erro nos contadores de electricidade.

O sistema é capaz de determinar a porcentagem de erro, incluindo todos os valores estatísticos, estes resultados podem ser guardados e nomeados ao cliente.

Para informar-se sobre o estado da medição uma barra de estado indicará de forma contínua a energia.

Opcionais

- Conjunto de cabos / Conjunto de cabos com conectores rápidos;
- Cabeçal para marcas nos discos ou Leds / Conversor de pulsos SO;
- Pinças compensadas para correntes até 120 A;
- Pinças para medição de corrente até 1000 A;

Dados técnicos

	MT360	MT365		
Geral				
Alimentação	85 - 132 VAC / 170 - 265 VAC, 47 63 Hz			
Consumo	aprox. 35 VA			
Range de temperatura	-15° + 45° C			
Umidade relativa não condensada	máx. 95 %			
Classe de IP	30			
Dimensões (AxAxP)	220 x 290 x 115 mm			
Peso	aprox. 4 kg			

Padão				
Modos de medição		4-Fios Ativo / Reativo / Aparente 3-Fios Ativo / Reativo / Aparente 2-Fios Ativo / Reativo / Aparente		
Frequência fundamental		15 70 Hz		
Classe de exatidão potência e energia		0.1	0.05	
Range de medição de tensão		100 mV 300 V		
Ranges de tensão		5 250 V		
Exatidão em tensão ^{3 5}		< 0,05 %	< 0,03 %	
Desvio por temperatura em medição de tensão ³		< 15 x 10 ⁻⁶ /K	< 5 x 10 ⁻⁶ /K	
Estabilidade em medição de tensão ¹		< 50 x 10 ⁻⁶	< 50 x 10 ⁻⁶	
Deriva a grande termo de tensão ²³		< 100 x 10 ⁻⁶ / Ano	< 80 x 10 ⁻⁶ / Ano	
Range de medição de	Medições diretas	1 mA 12 A		
corrente	Pinças compensadas	5 mA 120 A		
Ranges de corrente		50 - 100 - 250 - 500 mA 1 - 2.5 - 5 - 10 A		
Exatidão em corrente ⁴⁵	Medições diretas 10 mA 12 A	< 0.05 %	< 0.03 %	
	Medições diretas 5 10 mA	< 0.2 %	< 0.2 %	
	Pinças compensadas 0,5 120 A ⁷	< 0.15 %	< 0.15 %	
	Pinças compensadas 0,1 0,5 A ⁷	< 0.3 %	< 0.3 %	
Desvio por temperatura	Medições diretas 12 A	< 15 x 10 ⁻⁶ /K	< 5 x 10 ⁻⁶ /K	
em medição de intensidade ⁴	Pinças compensadas ⁷	< 50 x 10 ⁻⁶ /K	< 50 x 10 ⁻⁶ /K	
Estabilidade em medição de intensidade ¹		< 70 x 10 ⁻⁶	< 70 x 10 ⁻⁶	
Desvio a grande termo em medição de intensidade ^{2 4}	Medições diretas 12 A	< 100 x 10 ⁻⁶ / Ano	< 80 x 10 ⁻⁶ / Ano	
	Pinças compensadas ⁷	< 600 x 10 ⁻⁶ / Ano	< 600 x 10 ⁻⁶ / Ano	
Exatidão em ângulo ^{3 4}	Medições diretas 12 A	< 0.015°	< 0.010°	
	Pinças compensadas ⁷	< 0.1°		
Erro de medicão da frequência		± 0,01 Hz		
Exatidão em potência e	Medições diretas 12 A	< 0.1 %	< 0.05 %	
energia ^{3 4 5 6}	Pinças compensadas 0,5 120 A ⁷	< 0.2 %	< 0.2 %	
Desvio por temperatura	Medições diretas 12 A	30 x 10 ⁻⁶ /K	10 x 10 ⁻⁶ /K	
em potência e energia ^{3 4}	Pinças compensadas 0,5 120 A ⁷	65 x 10 ⁻⁶ /K	65 x 10 ⁻⁶ /K	
Estabilidade em medição de potência e energia ¹		< 100 x 10 ⁻⁶		

Versão: 15. maio 2012

- 1 Estabilidade por hora (Uma medição por minuto com tempo de integração Ti =60s 5 Relacionado com o final da range
- $2\;$ Estabilidade por ano (Uma medição por mês com tempo de integração Ti =60s
- 3 De 30 V até 300 V
- 4 Direto: de 10 mA até 12 A / Pinças MT3430 de 0.5 A até 120 A
- 6 Relacionado com a potência aparente
- 7 Só con pinças compensadas Ct´s

ZERA GmbH Hauptstraße 392 53639 Königswinter Germany

Phone: +49 (0) 2223 704-0 Fax: +49 (0) 22 23 704-70 Email: zera@zera.de Web: www.zera.de